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SUMMARY

An entropy-based approach is presented for assessment of computational accuracy in incompressible
�ow problems. It is shown that computational entropy can serve as an e�ective parameter in detecting
erroneous or anomalous predictions of mass and momentum transport in the �ow �eld. In the present
paper, the �uid �ow equations and second law of thermodynamics are discretized by a Galerkin �nite-
element method with linear, isoparametric triangular elements. It is shown that a weighted entropy
residual is closely related to truncation error; this relationship is examined in an application problem
involving incompressible �ow through a converging channel. In particular, regions exhibiting anomalous
�ow behaviour, such as under-predicted velocities, appear together with analogous trends in the weighted
entropy residual. It is anticipated that entropy-based error detection can provide important steps towards
improved accuracy in computational �uid �ow. Copyright ? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

The application of computational �uid dynamics (CFD) to �uids engineering design has
become widespread during the past few decades. From the design of power generation and
transmission systems to de-icing of helicopters and airplanes, and many other applications,
CFD provides a key tool for the achievement of many technological goals. Although detailed
experimentation, such as wind tunnel testing, is an important part of the advancement of
these technologies, it may be too expensive or time consuming in many cases. Furthermore,
in the absence of conclusive grid re�nement studies, or available experimental or analytical
(benchmark) data, the design engineer is often left with a dilemma in assessing whether certain
local CFD predictions, such as a sudden �ow reversal, are reasonable or perhaps non-physical,
due to discretization or other modelling errors [1].
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1014 G. F. NATERER AND D. RINN

Unlike the Euler and Navier–Stokes equations, relatively little attention has been devoted
to the numerical discretization and potential importance of the second law in computational
�uid �ow. It is suspected that entropy computations are often neglected when design criteria
are not directly linked to the second law. However, previous studies by Lax [2], Hughes and
co-workers [3] and Camberos [4] have shown their importance. For example, the second law
may provide a corrective measure for computations exhibiting non-physical predictions such as
numerical oscillations (i.e. Naterer and Schneider [5]). Also, previous studies by Merriam [6]
and Naterer and Camberos [7] have shown close relationships between the second law and
overall accuracy and stability of �uid �ow computations. In many situations, entropy can give
deep insight into the overall behaviour of a particular engineering system. In this article, an
entropy-based formulation will be described in the context of a Galerkin weighted residual
method [8].
When striving to improve the numerical accuracy, grid re�nements and=or higher-order

interpolation within an element may be adopted. Error indicators are widely used to improve
solution accuracy. Local a posteriori error estimates in �nite-element analysis involve the
assessment of solution errors by analysing the results after the computed solution is obtained.
These methods are described in di�erent levels of detail in various sources, including �nite-
element books of Akin [9] and Becker et al. [10]. Also, a comprehensive overview of error
indicators for elliptic problems is documented by Babuska et al. [11].
The magnitude and distribution of �nite-element errors can be predicted by certain function-

als of the residual, involving an ellipticity condition of the governing di�erential operator [12].
A di�culty of evaluating certain norms in residual-based methods occurs when requiring lo-
cal auxiliary problems to be formulated [13], thereby increasing the computational costs.
Furthermore, the error estimates often involve optimal grids based on local gradients of the
scalar variable [14], which can entail substantially more computational e�ort. An alternative to
residual-based techniques uses interpolation error estimates, whereby higher-order derivatives
of the unknown solution are computed throughout the mesh [15]. For example, second-order
derivatives of the scalar variable are used for triangular elements in heat transfer and �eld
problems [16]. Some applications to solid and �uid mechanics problems are presented by
Oden et al. [17]. However, due to its complex post-processing, these methods are generally
available for a limited class of �eld problems.
Thus, despite their advances, these error indicators have various limitations. They often

require higher-order derivatives, which may be di�cult or impractical to evaluate. In many
cases, these derivatives may not be bounded. Also, a systematic way of calculating various
constants in the error bounds of conventional error indicators is generally not known for a
wide class of problems. As a result, an alternative entropy-based approach is considered in this
article. In addition to potentially overcoming the aforementioned di�culties, its basis in the
second law of thermodynamics may encompass all numerical errors, not just selected errors
such as dispersive or false di�usion errors [18]. Other error indicators may be restricted to h
methods or p methods [11], whereas the second law is applicable under both circumstances.
Furthermore, unlike other methods, it may be used at both global and local levels of �nite-
element analysis.
Previous studies have shown that entropy can provide an e�ective tool for improved ac-

curacy, including predictions involving viscous, compressible �ows (i.e. Reference [19]) and
�uid �ow with phase change (i.e. Reference [20]). The goal of this article is to examine
a more direct relationship between computational entropy and numerical error in a Galerkin
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ENTROPY-BASED APPROACH TO CFD 1015

�nite-element method. For inviscid and isothermal �ow, it is expected that computational er-
rors alone are responsible for production=destruction of entropy. In this article, an entropy
formulation will be developed and applied to an incompressible �ow problem to demonstrate
its promising potential in assessing numerical errors.

2. PROBLEM FORMULATION

2.1. Governing equations

The Euler equations of �uid motion for incompressible, inviscid �ow can be written as

@q
@t
+

@f
@x
=0 (1)

where the conserved variables, q, and �ux quantities, f , are given by

q=




�
�u
�v


 ; f =




�u �v
�uu+ p �uv

�vu �vv+ p


 (2)

The bold font notation involving di�erentiation of the independent spatial variable, i.e. @=@x,
refers to the divergence operator in multi-dimensional problems (note: regular derivative in
1-D problems).
For steady inviscid �ows, the governing equation becomes Laplace’s equation, i.e.

@2�
@x2

+
@2�
@y2

= 0 (3)

where � refers to the velocity potential. After � is obtained from the solution of Equation
(3), subject to appropriate boundary conditions, the velocity components can be computed by

u=
@�
@x

; v=
@�
@y

(4)

Alternatively, the governing equation may be written as Laplace’s equation in terms of a
stream function,  . Using a viscous–inviscid interaction (i.e. see Reference [1]), the potential
�ow solution may then be combined with an appropriate boundary layer solution to provide
the complete behaviour of the external �ow. In this article, only the inviscid �ow will be
examined in detail.
After adopting the velocity potential in the continuity equation, the momentum equations

(i.e. Euler equations) become Bernoulli’s equation, i.e.

p=p0 +
1
2
�(V 2

0 − V 2) (5)

where V represents total velocity magnitude and p0 and V0 refer to reference pressure and
velocity values, respectively. We will use this Bernoulli equation to calculate pressure, based
on the velocity results obtained from the solution of Laplace’s equation.
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Figure 1. Schematic of sample (a) interior and (b) boundary element.

2.2. Weighted residual method

In the present work, Equation (3) will be solved with a weighted residual method involving
a �nite-element discretization. In this method, a trial function, such as a piecewise linear
interpolation function, is selected to approximate the problem variable (�). We will use the
notations � and �̃ to indicate exact and approximate (trial) functions, respectively. In substi-
tuting � into Equation (3), we �nd that the right side of the equation is indeed zero since
� is the exact solution. However, substituting �̃ will generally yield a non-zero value on the
right side of Equation (3) since �̃ is an approximate solution. The di�erence between these
right-side values is an indication of solution error (called solution residual). A convenient
way to assess this residual is by de�ning an operator, L, acting on a scalar variable, such as
� or �̃, i.e.

L(�)=
@2�
@x2

+
@2�
@y2

(6)

In this way, the residual becomes L(�̃).
In the weighted residual method, the residual is minimized over the domain after setting

the integrated and weighted value of the residual to zero, i.e.∫
V

WiL(�̃) dV=
∫
V

WiR dV=0 (7)

where Wi, R and V refer to weight function, solution residual and volume of element (or area
in two dimensions), respectively. In this paper, Galerkin’s method is used to select the weight
functions, whereby the weight functions equal the interpolation functions of the approximate
solution.

2.3. Finite element procedure

Linear, isoparametric, triangular elements will be used in the two-dimensional discretization
of the problem domain. Local co-ordinates (�1; �2; �3) are de�ned within each element (see
Figures 1(a) and (b)) and interpolation of scalar values within an element is based on the
local shape functions, i.e.

�(x; y)=N1�1 + N2�2 + N3�3 (8)
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ENTROPY-BASED APPROACH TO CFD 1017

where uppercase � and Ni, i=1; 2; 3, refer to nodal value and shape function evaluated at
position x, y (or �1, �2, �3 in terms of local co-ordinates) within the element, respectively.
The shape functions are written in terms of the global co-ordinates, x and y, by

Ni=
1
2a
(ai + bix + ciy) (9)

where

a1 = x2y3 − x3y2; b1 = y2 − y3; c1 = x3 − x2 (10)

a2 = x3y1 − x1y3; b2 = y3 − y1; c2 = x1 − x3 (11)

a3 = x1y2 − x2y1; b2 = y1 − y2; c3 = x2 − x1 (12)

and the subscripts for x and y refer to the local node within the element. Also, a denotes the
area of the triangular element (note: 2a= a1 + a2 + a3). Furthermore, the derivatives of the
linear shape functions are obtained from Equation (9), i.e.

@Ni

@x
=

bi

2a
;

@Ni

@y
=

ci
2a

(13)

These results will now be applied to the discretization of the governing equation, Equation (6).
Applying Galerkin’s weighted residual method, Equation (7), to the governing equation,

Equation (6),∫
Ae

Ni

[
@
@x

(
@�̃
@x

)]
dxe dye +

∫
Ae

Ni

[
@
@y

(
@�̃
@y

)]
dxe dye=WRe

i (14)

where A and the superscript e refer to area and elemental value (i.e. local within element),
respectively. Applying integration by parts to Equation (14), we obtain∫

Se

[
Ni

@�̃
@n

]
dSe −

∫
Ae

[
@Ni

@x
@�̃
@x
+

@Ni

@y
@�̃
@y

]
dxe dye=WRe

i (15)

where the �rst and second integrals are line and area integrals, respectively.
Various boundary conditions can be represented in Equation (15) by speci�cation of @�̃=@n

(derivative of �̃ in a direction normal to the boundary) along the boundary edge, Se, in the
�rst term. A sample boundary element on sides 1–2 is shown in Figure 1(b). In the evaluation
of the line integral in Equation (15), the normal derivative is represented by

@�̃
@n
=− Be�̃+ Ce (16)

For example, a constant value of the derivative of �̃ (i.e Be=0 with non-zero Ce) is used
to specify a �xed inlet velocity into the domain. The remaining assembly of elements and
boundary conditions are completed based on conventional �nite-element procedures [8]. In
the following section, the �nite-element procedure will be applied to the second law of ther-
modynamics, focusing mainly on its relevance in detecting anomalous trends in the numerical
results.
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1018 G. F. NATERER AND D. RINN

3. SECOND LAW FORMULATION

Unlike the equality in the conservation equations, i.e. Equation (1), the second law involves
an inequality (associated with production of entropy for irreversible processes) or equality
(irreversible processes). In particular, the second law may be written in a similar form as
Equation (1),

@S
@t
+

@F
@x
= Ṗs (17)

where S(q) and F(q) refer to entropy and entropy �ux, respectively. For the Euler equations,
these variables are given by S=�s and F=�vs, respectively, where s refers to speci�c en-
tropy. For irreversible processes, including isothermal, inviscid �ow, the second law requires
that the entropy production should equal zero. Otherwise, for irreversible processes such as
viscous mixing in boundary layers or heat transfer, Ṗs, is positive in Equation (17).
In addition to the second law, the entropy and entropy �ux functions must satisfy two other

important properties [2]. The �rst condition, involving downward concavity, is given by

S ′′(q)¡0 (18)

The second derivative of S(q) is a negative de�nite matrix since irreversible processes produce
entropy. In particular, entropy is bounded from above as it attains a maximum value at an
equilibrium condition. Furthermore, the following second condition involves compatibility of
the conserved and entropy �ux variables, i.e.

F′(q)= S ′(q)f ′(q) (19)

where f ′(q) refers to the �ux Jacobian (tensor of order 3) and F′(q) is the entropy �ux deriva-
tive matrix. The compatibility condition in Equation (19) is an alternative way of expressing
conservation of entropy for reversible processes.
In order to evaluate entropy in Equation (17), an entropy equation of state, involving

pressure, is required. In this article, the entropy is written in terms of pressure, p, �uid
density, �, and speci�c heat, cv, in the following manner:

S=�s=�cv ln
[

p=p0
(�=�0)cp=cv

]
≈ �cv ln

[
p
p0

]
(20)

where the subscript 0 refers to reference state. Equations (5) and (20) can be combined to
give an expression involving entropy, pressure and velocity.
Then, the velocity components can be written in terms of the gradient of the velocity

potential, thereby yielding the following result for entropy production from Equations (4),
(5), (17) and (20),

Ṗs = �
@�
@x

@
@x

[
cv ln

(
1 +

�
2p0

V 2
0 − �

2p0

(
@�
@x

)2
− �
2p0

(
@�
@y

)2)]

+�
@�
@y

@
@y

[
cv ln

(
1 +

�
2p0

V 2
0 − �

2p0

(
@�
@x

)2
− �
2p0

(
@�
@y

)2)]
(21)
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Performing the di�erentiation in both terms, we obtain

Ṗs ≈ −cv�2

p

[
u2
(
@2�
@x2

)
+ V0(u+ v)

(
@2�
@x@y

)
+ v2

(
@2�
@y2

)]
(22)

where V0 refers to reference velocity, such as a speci�ed inlet velocity.
After � and its derivatives are obtained from the solution of Equation (3), the veloc-

ity components can be calculated based on Equation (4) and so the entropy production
can be computed from Equation (22). Although the analytic solution would give a zero
entropy production for incompressible, inviscid �ow, the numerical solution may give a non-
zero value since truncation errors may arti�cially produce (or destroy) entropy in the �ow
�eld. It is anticipated that this ‘arti�cial’ entropy production (or destruction) is closely re-
lated to non-physical or anomalous trends in predicted momentum exchange, such as ve-
locity undershoots, in the �ow �eld. It will be shown that entropy computations can be
monitored to detect local anomalies and numerical errors in the �ow �eld predictions. The
magnitude of computational entropy production (or destruction) can provide a quantitative
measure of these discrepancies through truncation errors in the local �ow
computations.
The computation of entropy will be based on our earlier Galerkin’s method. Recall that the

method of weighted residuals seeks to �nd the unknown coe�cients in the trial function, �̃,
by forming a weighted average of the solution error and specifying that this weighted average
vanish in some average sense across the entire problem domain. It is anticipated that the
corresponding weighted residual form of the entropy equation would not violate the second
law if the interpolation and weight functions provided the exact distribution of � within the
domain. For example, linear velocity interpolation functions should yield exact results in the
case of Couette channel �ow [21] where a linear velocity pro�le is observed under appropriate
boundary conditions. However, if the same interpolation functions are adopted in viscous �ow
through a pipe, then discrete errors in the weighted residual would arise since piecewise linear
pro�les are selected to approximate an essentially parabolic velocity distribution (laminar,
fully developed �ow [21]). This discrepancy between actual and computed pro�les would not
be detected in the weighted residual formulation of the conservation equations because the
minimization of the resulting residual is used to compute the unknown coe�cients forming
the solution itself.
As a result, it is anticipated that an additional entropy principle can utilize the selected

weight and interpolation functions to assess numerical accuracy by testing their relative mag-
nitude by an equivalent weighted residual discretization of the second law. In a similar way
as the derivation of Equation (14), we obtain the following weighted residual equation based
on Equation (22),

−
∫
A
NiK

[
u2
(
@2�̃
@x2

)
+ V0(u+ v)

(
@2�̃
@x@y

)
+ v2

(
@2�̃
@y2

)]
dA =

∫
A
WiR dA (23)

where K =− cv�2=p. For brevity, the overbar tilde notation in the description of the approxi-
mate function, �̃, will be dropped in subsequent equations (replaced by �).
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1020 G. F. NATERER AND D. RINN

Expanding the left side of Equation (23),

Ku2
∫
A

@
@x

(
Ni

@�
@x

)
dA− Ku2

∫
A

@Ni

@x

(
@�
@x

)
dA+ KV0(u+ v)

∫
A

@
@x

(
Ni

@�
@y

)
dA

−KV0(u+ v)
∫
A

@Ni

@x

(
@�
@y

)
dA+ Kv2

∫
A

@
@y

(
Ni

@�
@y

)
dA

−Kv2
∫
A

@Ni

@y

(
@�
@y

)
dA = WERi (24)

where WERi refers to weighted entropy residual (node i), based on the right side of Equa-
tion (23). It should be noted that W and R in WER do not refer to weight function and
residual, respectively, in the sense of individual expressions, but rather as words in the
acronym. Applying integration by parts to the �rst, third and �fth terms in Equation (24),
we obtain weighted entropy �ux terms across the edges of an element. After assembly of
all �nite elements, these boundary terms are added in the global equations only in elements
with sides along external domain boundaries. Since it is anticipated that computational errors
arise largely due to numerical discretization within the domain, rather than speci�cation of
boundary conditions, we will focus our attention on the interior terms only.
For isoparametric, triangular elements, the spatial derivative terms in Equation (23) can be

readily evaluated. The values of � and its derivatives will be approximated in the following
way:

�=
3∑

j=1
Nj�j;

@�
@x
=

3∑
j=1

@Nj

@x
�j (25)

A similar expression is obtained for the y derivative. Substituting Equation (25) into Equa-
tion (24),

−K
∫
A

3∑
j=1

[
@Ni

@x
@Nj

@x
�ju2 +

@Ni

@x
@Nj

@y
�jV0(u+ v) +

@Ni

@y
@Nj

@y
�jv2

]
dA=WERi (26)

In Equation (26), the subscripts i and j can be interpreted as row and column, respectively,
within the local sti�ness matrix for the entropy equation.
Recall that the partial derivatives of � are given by constant values in Equation (13).

Substituting these values into Equation (26), we obtain the following 3× 3 local sti�ness
matrix, Gij, and entropy sti�ness equation

K[Ge]{�e}= {WERe} (27)

where

Ge
ij= bibju2 + bjciV0(u+ v) + cicjv2 (28)

In the same way as the assembly of elements for the conservation equations, the above
local sti�ness matrix is computed for each element and then assembled into the global sti�-
ness matrix in accordance with the mapping between local and global nodes in the mesh.
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In particular, the weighted entropy residual at node i is obtained by

WERi=
nel∑
e=1

nnpe∑
j=1

Ge
ij�

e
j (29)

where contributions of various WERe terms to a particular global node are obtained after
assembly of all elements. In Equation (29), addition of a term on the right side to node i is
only included if local node j in element e corresponds to global node i. Also, the summations
are performed over nel (number of elements) and nnpe (number of nodal points per element).
Although the weighted residual term vanished after assembly of elements following Equa-

tion (15), an analogous zero summation does not directly apply to the assembly procedure
involving Equation (27). Recall that the unknown nodal � values were obtained to provide a
zero weighted residual in the conservation equation, Equation (7). On the other hand, these
nodal � values are then substituted into the equivalent entropy form of Equation (7), where
the discrete operator is instead based on Equations (21)–(22). In this case, the nodal � values
are no longer unknown quantities (unlike solution of conservation equation). As a result, the
nodal � values are e�ectively tested in this way to �nd the resulting WER proximity to zero
(expected value for potential �ow) following the assembly of all elements.
Equation (27) indicates that the weighted entropy residual is computed by multiplication of

the sti�ness matrix by the column vector of nodal potential function values. These calculations
give a value of weighted entropy residual at the corresponding global node. In particular, the
values of the global sti�ness matrix and potential function distribution must be known prior
to the entropy analysis. In this way, the entropy analysis is de-coupled from the initial �nite-
element solution involving �. Although it is de-coupled, it will be shown that it can provide
a useful error detection mechanism, and a possible corrective step in the computations to
improve solution accuracy at subsequent iterations or time steps in transient problems.

4. ENTROPY-BASED ERROR ANALYSIS

In this section, we will develop a relationship between truncation error in the discrete solution
and weighted entropy residual (as discussed in the previous section). Although the analysis
here will only consider a one-dimensional form of the governing equations and domain, it is
anticipated that the results can be readily extended to two-dimensional problems by including
an additional y direction derivative in the analysis. Also, the general case of transient problems
will be considered here. The transient result can be readily simpli�ed to a steady-state situation
(previous section) by dropping the time dependent terms.
Recall the following conservation form of the governing Euler equations

La(q)=
@q
@t
+

@f
@x

(30)

where q, f , L and superscript a refer to state and �ux variables, operator and analytic, respec-
tively. In Equation (30), the analytical operator, La(q), acts on q, and yields a zero residual
since q represents the exact solution. However, in the �nite-element formulation, the discrete
operator Ld(q̃) (acting on the approximate solution q̃) generally gives a non-zero residual
since the approximate solution typically di�ers from the exact solution. This discrepancy
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1022 G. F. NATERER AND D. RINN

may arise from various factors, such as inadequate interpolation in the computations. Based
on backward di�erencing in time, and linear interpolation, the following discrete operator is
obtained, based on discretization of Equation (30),

Ld(q)=
qni − qn−1i

�t
+
fni − fni−1
�x

(31)

where the overbar tilde notation is dropped in the discrete analysis for brevity since it can be
implicitly understood that the discrete operator acts on the approximate solution, q̃.
Using Taylor series expansions,

qni = q
n−1
i +�t

@q
@t

∣∣∣∣
n−1

+
�t2

2
@2q
@t2

∣∣∣∣
n−1

+ · · · (32)

fi−1 = fi −�x
@f
@x

∣∣∣∣
i
+
�x2

2
@2f
@x2

∣∣∣∣
i
− · · · (33)

Substituting these expansions into Equation (31), and comparing with the terms in the
analytic operator Equation (30), we obtain

Ld(q)=La(q)− �x2

2
@2f
@x2

∣∣∣∣
i
+
�t2

2
@2q
@t2

∣∣∣∣
n−1

+ · · · (34)

Alternatively, Equation (34) can be written in the following compact form:

Ld(q)=La(q)−HOT (35)

where HOT refers to higher-order terms resulting from the Taylor series expansion in Equa-
tions (32)–(33). In particular, Equations (34)–(35) indicate that the discrete operator depends
on the second-order temporal and spatial derivatives of q and other higher-order terms.
It will now be shown that truncation errors associated with the higher-order terms in

Equation (35) can be directly related to the weighted entropy residual obtained earlier in Equa-
tion (27). In particular, truncation errors often yield anomalies (i.e. velocity overshoots=under-
shoots) in the computational predictions. Since the second law is expected to be sensitive to
this type of occurrence, it is anticipated that the weighted entropy residual can detect non-
physical anomalies in the computed results. Previous researchers have provided some evidence
of this hypothesis and the role of entropy in stable computations. For example, recent devel-
opments have demonstrated that satisfaction of the second law is closely linked to upwinding
accuracy (i.e. Reference [19]). Furthermore, it has been shown that the second law can pro-
vide a quantitative measure for identifying anomalous velocity overshoots in gas dynamics
(i.e. Reference [5]). The goal of this section is to seek a more direct connection between
truncation error and weighted entropy residual. In this way, the signi�cance and impact of
entropy in computational �uid �ow can be further strengthened.
Pre-multiplying the discretization operator by @S=@q in Equation (34) gives the following

expression for the entropy-weighted discretization error:

@S
@q

Ld(q)=
@S
@q

@q
@t
+

@S
@q

@f
@x

− @S
@q
(HOT) (36)
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In this equation, the derivative of f on the right side can be expanded as f ′(q) multiplied
by @q=@x using the chain rule of calculus. Furthermore, using the compatibility condition in
Equation (19), as well as the chain rule, we obtain

@S
@q

Ld(q)=
@S
@t
+

@F
@q

@q
@x

− @S
@q
(HOT) (37)

From Equations (17) and (37), it can be observed that the �rst two terms on the right side
of Equation (37) can be written as the entropy production rate, Ṗs.
The numerical solution of Equation (31) is obtained by setting Ld(q)=0, so the left side

of Equation (37) is approximated as zero. The remaining terms yield the following result:

Ṗs=
@S
@q
(TE) (38)

where TE refers to truncation errors arising from neglected higher-order terms in the numeri-
cal formulation. The result in Equation (38) con�rms an expected trend involving entropy and
truncation error. For inviscid �ows, it indicates that less computational entropy is produced
when the grid spacing is reduced (i.e. truncation error decreases), while less entropy destruc-
tion would be anticipated for the analogous case with viscous �ows. In this analysis, the
magnitude of Ṗs refers to absolute di�erence between computed and expected entropy produc-
tion (i.e. zero expected Ṗs for potential �ow), whereas the magnitude and sign of Ṗs would be
adopted for viscous �ows. Furthermore, an important bene�t of Equation (38) arises because it
is de-coupled from the solution of the conservation equation, in the sense that � is obtained
independently of Ṗs. As a result, Ṗs can be used as an independent detection of truncation
errors, as well as a design variable for other applications, such as process optimization.
Comparing Equation (38) with the result leading to Equation (23), we then obtain the

following relationship between truncation error and weighted entropy residual:∫
A
Ni

@S
@q
(TE) dA ≈WERi (39)

where the left side of the equation represents a column vector (with entry i corresponding
to node i) for a weighted truncation error (WTE). This result indicates that the weighted
truncation error scales as the weighted entropy residual. It should be noted that entropy is
implicitly coupled to other variables, including velocity and pressure through the Bernoulli
equation and Equation (20), thereby providing a non-zero factor, @S=@q, in Equation (39).
At this time, it is worthwhile to compare this entropy-based approach with other conven-

tional methods of error analysis. For example, in Taylor series-based error analysis (alone;
without analogy to entropy), the power (exponent) of the leading truncated term in the dis-
crete formulation indicates the order of accuracy and truncation error in the model [1]. False
di�usion errors arising when a �ow is oblique to the grid lines can be assessed through a
false di�usion coe�cient, which describes the cross-stream di�usion arising from errors in
the convection modelling [18]. These two methods apply to truncation and false di�usion
errors, respectively; however, many other sources of error a�ect the results, i.e. discretization
(interpolation for geometry and solution variables), spatial and temporal integration, iterations,
round-o�, etc.
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Error analysis with one type of approach is often not feasible for other sources of error. In
this way, the current entropy-based approach o�ers the following potential advantages over
the previously described methods:

• Taylor series analysis is mathematically based, thereby often lacking physical interpreta-
tion; entropy and the second law can o�er new physical insight into solution errors.

• The second law can provide a systematic, uni�ed framework that can encompass both
overall and individual approximation errors in the formulation [19].

• Taylor truncation errors are typically assessed after a solution is obtained, whereas en-
tropy can be used as an active, rather than passive, variable in the error reduction [20].

• Taylor series methods alone (without analogy to entropy) are limited in view of terms
discretized with di�erent orders of accuracy. For example, convective terms may have
a higher-order representation than di�usive terms. On the other hand, the magnitude
of computed entropy production (or destruction) is a potentially e�ective alternative
for measuring all types of errors since entropy is functionally dependent on all state
variables.

Although the present paper only addresses truncation errors, it is anticipated that the entropy-
based approach provides a solid foundation from which future advances (involving other
types of solution errors) can be realized. In the following section, this entropy analysis
will be applied to an example problem involving incompressible �ow within a converging
channel. It will be shown that numerical errors are closely related to the weighted entropy
residual.

5. NUMERICAL RESULTS AND DISCUSSION

The problem considered in this section involves incompressible �ow through a converging
channel (see Figure 2(a)). Based on the method of superposition of potential �ow solutions
and conformal mapping, an analytical solution is obtained by combining the velocity potential
functions, or equivalently, stream functions,  , for uniform and doublet �ows. This superpo-
sition is similar to the construction of a Rankine oval [21], based on combined uniform and
line source potential �ows. In this case, symmetric doublets are added to simulate the upper
parallel boundary in the current case. In an actual channel �ow, a no-slip boundary condition
is required at the top boundary (�xed wall), but in the present inviscid �ow simulation, only
a zero lateral (v component) velocity is set as zero. In practise, a viscous–inviscid interaction
would be required (as discussed earlier), but the main focus of the current example will be
the inviscid core region.
After combining the functions in the fashion described above, we obtain

 =V0y − V0y
[

R2

x2 + y2

]
− V0(y − 2h)

[
R2

x2 + (y − 2h)2
]
− V0(y + 2h)

[
R2

x2 + (y + 2h)2

]
(40)

where R and h refer to cylinder radius (see quarter cylinder centred at origin in Figure 2(a))
and channel height, respectively. Di�erentiating the stream function in Equation (40), the
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Figure 2. Schematic of (a) channel region and (b) analytical solution with streamlines.

following solutions are obtained for the local velocity components:

u=
@ 
@y
=V0 − V0

�(x2 + y2)
+ 2

V0y2

�(x2 + y2)2
− V0

�(x2 + (y − 2h)2)

+
V0(y − 2h)(2y − 4h)
�(x2 + (y − 2h)2)2 − V0

�(x2 + (y + 2h)2)
+

V0(y + 2h)(2y + 4h)
�(x2 + (y + 2h)2)2

(41)

v=−@ 
@x
= − 2 V0Ryx

�(x2 + y2)2
− 2 V0(y − 2h)x

�(x2 + (y − 2h)2)2 − 2
V0(y + 2h)x

�(x2 + (y + 2h)2)2
(42)

where

�=
V0R

1=R+ 1=(R− 2h) + 1=(R+ 2h) (43)

The computational domain is taken between x=−12 and x=0 from y=0 to y=8 (see Fig-
ure 2(a)). The analytical solution (stream function contour lines) is illustrated in Figure 2(b).
It will be observed that truncation errors, based on a comparison between computed results
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Figure 3. Con�gurations for (a) mesh 1, (b) mesh 2 and (c) mesh 3.

and the exact solution, and anomalies are closely linked with the weighted entropy residual
and the second law.
Three mesh con�gurations will be examined in the current studies (see Figure 3). The grid

spacing in the x and y directions is e�ectively reduced by a factor of 2 in each case and
grids 1, 2 and 3 contain 13, 50 and 194 elements, respectively. The inlet pressure, p0, and
velocity, V0, are speci�ed as 100kPa (atmospheric pressure, i.e. zero gage pressure) and 1m=s,
respectively. The density of air is taken as 1:2 kg=m3 at standard atmospheric conditions.
Although zero entropy production is expected in this inviscid �ow problem, it is the com-

puted deviation from this expected value that can serve as a quantitative measure of anomalous
solution behaviour. Since analytical (or known) entropy distributions are generally not avail-
able in many �ow conditions, including viscous, turbulent �ows, the deviations from expected
behaviour can be quanti�ed in the sense that the magnitude of computed negative entropy
production would be an indication of anomalous results. These anomalous results may arise
from discretization errors such as errors due to inadequate spatial or temporal di�erencing in
the overall formulation.
The computed results involving total velocity magnitude, V , and normalized, weighted en-

tropy residual will now be presented (Figures 4–5) along horizontal and vertical
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Figure 4. Velocity and normalized entropy residual results along (a)–(b) y=4 and (c)–(d) y=0.

sections of the domain. In particular, the results will be displayed for elements along two
horizontal lines, i.e. y=4 and bottom boundary, y=0 (Figure 4), and two vertical lines,
i.e. x= − 9 and out�ow boundary, x=0 (Figure 5). In these �gures, it will be shown that
the diminishing solution error with grid re�nement is closely related to a diminishing WER
magnitude.
Along y=4, the velocity magnitude increases when x increases since the �uid experiences

an area contraction within the channel (see Figure 2(a)). In Figure 4(a), the computed results
agree well with the analytical solution as grid re�nement is e�ected. Although large solution
errors are observed for the coarse grid (mesh 1), these computed errors are largely reduced
in the �nite-element results for the �ne grid (mesh 3). Larger solution errors (coarse mesh)
are observed in the contracting region above the cylinder. This result is not surprising in the
sense that the �ow character is changing more rapidly there (i.e. in comparison to inlet region
near x= − 12) and thus more grid re�nement is required for adequate resolution in regions
exhibiting rapid �ow variations. In addition to reduced solution error after grid re�nement in
Figure 4(a), the proper trends in the data are observed, i.e. monotonically increasing velocity
magnitude through the converging channel.
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Figure 5. Velocity and normalized entropy residual results along (a)–(b) x=− 9 and (c)–(d) x=0.

In Figure 4(b), the entropy residual results (normalized with respect to a reference WER,
i.e. total computed WER in the domain) are illustrated. It can be observed that the normalized
WER is reduced as the grid is re�ned to a smaller mesh spacing. In other words, the reduction
of solution error in Figure 4(a) closely coincides with the rate of WER reduction in the
computed entropy results. The signi�cance of this observation is that WER can provide a
quantitative measure of truncation error in more practical circumstances where an analytical
solution is not available for comparison purposes. For example, in the absence of experimental
data or analytical benchmark results (commonly experienced in industrial �uid �ow problems),
the current results indicate that the computed WER can provide some evidence regarding the
reliability, accuracy and physical plausibility of the numerical results.
The absolute value of WER is reported in the current results since either a positive or

negative deviation from zero entropy production is considered erroneous for incompressible,
potential �ow. This approach can be readily modi�ed to more complex �ows, such as viscous,
turbulent �ows, by considering the erroneous deviation as computed negative entropy produc-
tion since these computations would violate the second law. Furthermore, the magnitude and
overall trends in computed WER results appear closely related to local �ow anomalies. For
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example, the decreased velocity at the outlet (mesh 1) in Figure 4(a) is clearly non-physical
since the �uid experiences an area contraction. This local �ow anomaly is detected by an
increased WER to a maximum computed WER at the outlet section in Figure 4(b). It appears
that local WER computations can detect anomalous trends in �uid �ow predictions without
knowledge (a priori) of the expected or exact results.
In a similar way, the results in Figures 4(c)–4(d) illustrate predicted velocity and WER

results along the bottom boundary (elements along y=0). In this case, the velocity decreases
from its speci�ed inlet value to zero at the stagnation point in front of the cylinder surface.
Although the computed stagnation zero velocity satis�es the boundary condition (zero �uid
penetration through wall), it lies within the boundary layer region, i.e. not inviscid region as
examined and shown here. The results again illustrate the reduced solution error and computed
WER magnitude as grid re�nement is e�ected (i.e. smallest error with results from mesh 3). If
an analytical solution was not available, then the WER results in Figure 4(b) would correctly
detect anomalous results at x= − 5 from mesh 1 and higher solution errors than predictions
with mesh 3 at the same position since the WER is approximately an order of magnitude
smaller in the latter case. Based on Figure 4(c), these detected anomalies would be correct
since an erroneous constant velocity pro�le is predicted for mesh 1 (between x=−7 and −5)
whereas mass and momentum exchange at this location requires a sharp decrease in velocity
as the surface of the cylinder is approached.
It should be emphasized that the entropy-based approach provides a quantitative measure

of this anomalous behaviour and thus it provides a potentially predictive mechanism for
corrections and=or suitable adjustments of the computations. In addition to computational �uid
�ow, it is anticipated that this type of error detection and predictive entropy correction could be
applied to a variety of other engineering applications, including thermal=�uid control systems
or signal processing. As a result, although the current example is limited to incompressible,
potential �ow, it is anticipated that the entropy-based approach can be applied and extended
to other practical problems.
In Figure 5, results along x= − 9 are presented for velocity magnitude (Figure 5(a)) and

normalized entropy residual (Figure 5(b)). In this case, the velocity magnitude is lower at
y=0 (bottom boundary) in comparison to y=8 (top boundary) since the �ow decelerates to
a stagnation point in front of the cylinder along y=0, whereas the �ow is not obstructed in
this manner along the top boundary. The solution error is reduced in grid 3 in Figure 5(a)
(smallest grid spacing), and the smallest computed WER magnitude (Figure 5(b)) coincides
with this observation. Similar trends are observed for results along the outlet boundary at x=0
for velocity magnitude (Figure 5(c)) and normalized WER (Figure 5(d)). In this case, the
e�ects of grid spacing are most clearly observed, where signi�cant discrepancy with analytical
results is obtained with the coarse grid (mesh 1), while good agreement between computed
and analytical results is achieved with the re�ned grid (mesh 3).
The weighted entropy residual results at the out�ow boundary are illustrated in Figure 5(d).

It should be noted that our entropy analysis has predicted that truncation error was proportional
to WER, but the constant of proportionality was dependent on the local entropy derivative
(with respect to q). The proportionality aspect is correctly predicted in the sense that reductions
in solution error and WER appear closely related. Thus, anomalous results can be detected
in the sense of WER comparisons between results from mesh 1 (higher WER) and mesh 3
(lower WER and lower solution error). Rather than expecting precise error values based on
the WER results, these WER results are instead aimed to provide a tool for error analysis
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Figure 6. Pressure results along (a) y=4, (b) y=0, (c) x=− 9, and (d) x=0.

and generally detecting overall trends involving non-physical or anomalous results in the �ow
computations.
Pressure results (in terms of gage pressure, kPa) are illustrated in Figure 6. In particular,

pressure results along y=4, y=0, x= − 9 and x=0 are illustrated in Figures 6(a)–6(d),
respectively. From Bernoulli’s equation, it can be observed that an increased velocity (rel-
ative to reference velocity, or incoming velocity, V0) coincides with a pressure decrease
(relative to reference pressure, i.e. atmospheric pressure). As a result, pressure decreases
(Figure 6(a)) as velocity increases (Figure 4(a)) along y=4; analogous trends are observed in
Figures 6(b)–6(d). In all cases, the predicted pressure results approach the analytical solution
as the grid is re�ned.
Important trends in solution error and entropy residual at the out�ow boundary (x=0) are

summarized in Figures 7(a)–7(b), respectively (note: log–log axes). Close similarities are
observed in the trends of both �gures. In Figure 7(a), the solution error is based on the
absolute di�erence between computed and exact (subscript ex) results of velocity magnitude
at various y positions at the out�ow boundary (x=0). The di�erent y positions are indicated
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Figure 7. (a) Solution error and (b) comparison of error indicators (x=0).

in the legend and the error is normalized with respect to a reference (inlet) velocity. From
the numerical results, the mean velocity at the outlet approaches the expected value of 2.0 as
the grid spacing decreases (i.e. 1=�x increases). Based on an area reduction by a factor of
2 from the inlet to the outlet, it is anticipated that the mean velocity at the outlet should be
twice the inlet velocity (based on conservation of mass).
Various predicted error indicators, including a non-dimensionalized WER (denoted by

WER∗) and other conventional error indicators, are displayed and compared in Figure 7(b)
(log–log scale). The value of WER is non-dimensionalized after dividing by the �uid speci�c
heat, cv, and unit mass �ow. In Figure 7(b), WER∗ is depicted at the lower edge (y=4) and
upper edge (y=8) of the outlet boundary, as well as the mean WER∗ value along the exit
boundary. It can be observed that WER∗ decreases when the grid spacing is reduced. This
trend is similar to that observed with the solution errors presented in Figure 7(a). The veloc-
ity �eld is determined from Laplace’s equation for the divergence of velocity, so the results
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in Figure 7(a) represent an error in the divergence of velocity. Although the rate of WER∗

reduction is slower than the results in Figure 7(a), the proper trends with 1=�x are observed.
The scaling factor that sets the leftmost point of each curve is represented by the constant
of proportionality inherent in the previously discussed error analysis relating the weighted
truncation error and the weighted entropy residual.
Also, other types of �nite-element error indicators are shown in Figure 7(b). These com-

parisons include methods described by Shih [16] and Babuska et al. [11]. Better solution
accuracy is generally achieved by increasing the number of degrees of freedom, N . In the
h method, N is raised when the mesh is re�ned into smaller elements, while the p method
increases the polynomial degree of elements without subdividing the elements. When the error
indicator, ‖e‖, is de�ned with respect to some norm, a posteriori error indicators based on
the h method are used as follows:

‖e‖=C1h(hn−1 + C2) (44)

where n and h refer to the order of accuracy and characteristic grid spacing, respectively.
Also, C1 and C2 arc constants (often unknown). In Figure 7(b), an h method with an esti-
mated o�set based on values at the midpoint of the out�ow boundary is depicted. Based on
Equation (44) with n=2, the method includes the error bounds of the interpolated function
through coe�cients involving the area and side length of the triangular element [16]. Further
details describing a posteriori error estimates are given by Babuska and Rheinboldt [22], as
well as Carey and Humphrey [23] regarding error bounds of variable meshes. The error in-
dicator, as well as its second-order approximation (without the o�set of the previous case),
show a faster rate of decline than WER∗, but at the expense of coarse grid predictions.
When values of C1 are scaled down by a factor of 0.01, the resulting slope and magnitude

are closely representative of Figure 7(a). However, the appropriate value of C1 in this approach
is generally unknown, whereas the non-dimensionalized WER∗ provides a physically-based
method involving the magnitude for coarse grids. This feature is further clari�ed when the
value of C1 can be estimated from second-order derivatives of the scalar [16] at various
positions of the out�ow boundary, y=4 and 6. This error indicator is based on the analysis
of interpolation errors [15]. In those cases, the error estimates are over-predicted, particularly
for coarse grids. Error indicators for coarse grids can be very important, since complex �ow
simulations are often too time consuming or expensive when performed on ‘su�ciently re�ned’
grids. In many cases, other error indicators are generally only accurate in the limit as the
element size approaches zero and the mesh possesses certain features [24]. Thus, in many
cases for a �xed grid size that is not optimally constructed and re�ned, conventional methods
are limited and the current entropy-based approach appears to provide a viable alternative for
error estimation.
It is worthwhile to closely compare the current WER∗-based approach and the other error

indicators. Due to its physical basis in the second law of thermodynamics, it is anticipated
that a WER∗ type method can potentially encompass more types of numerical errors, in-
cluding both overall and individual parts of the overall formulation, rather than only certain
types of errors (i.e. dispersive, false di�usion [18]). Also, the second law is a widely appli-
cable physical law, in contrast to mathematical error indicators limited to restricted classes
of problems. Its generality is expected to be relevant to both h methods and p methods.
While the aforementioned error indicators are generally applicable either locally or globally,
the WER∗ predictions have a physical basis under both cases. Furthermore, various speci�c
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Table I. (a) Comparison of WER results at out�ow boundary and (b) summary of WER results.

(a)

Mesh 1 Mesh 2 Mesh 3 Normalized WER slope

Node WER Node WER Node WER

4 38.51 5 11.21 9 5.50 −0:31
8 80.84 35 61.51 115 36.31 −0:28
13 139.19 33 93.04 111 53.20 −0:31

(b)

Mesh 1 Mesh 2 Mesh 3

Maximum (+) WER 139.14 93.04 53.20
Maximum (−) WER −85:66 −36:45 −11:26
Average WER 41.23 19.26 8.10

limitations are inherent in the other error indicators: (i) often di�cult or impractical to eval-
uate higher-order derivatives when �nding C1 and other constants, (ii) these derivatives may
be unbounded and (iii) no systematic way of evaluating the constants, such as C1, for a wide
class of problems. In view of these limitations, the current entropy-based approach o�ers an
alternative physical basis from which numerical errors can be understood and predicted.
These bene�ts of entropy-based error analysis can be inferred from the results in

Figure 7(b). The main trends of lower WER∗ values are observed when the grid is re�ned. It
is anticipated that a slow or no rate of WER∗ decline may indicate that a fundamental aspect
of the numerical formulation has been incorrectly implemented. Furthermore, individual com-
ponents of the overall formulation could be isolated in view of their entropy characteristics,
thereby identifying local error indicators. Although this article considers inviscid �ows, the
concepts could be extended to viscous �ows with heat transfer. In those cases, the magnitude
of negative entropy production could be used as the measure of error detection, rather than
absolute WER∗ values in the current �uid �ow example.
Furthermore, a comparison between WER (dimensional) values at equivalent nodal points

in all grids (i.e. grids 1–3), as well as the variation in maximum and minimum values (with
WER sign), is summarized in Table I. For example, consider all nodes along the out�ow
boundary in mesh 1 (i.e. nodes 4, 8, 13) and let us compare results at the same locations
from results based on simulations from meshes 2 and 3. Nodes 5 (mesh 2) and 9 (mesh 3)
coincide with the position of node 4 in mesh 1. Similar agreement is given for nodes 35 and
33 (mesh 2), as well as nodes 33 and 111 (mesh 3) with respect to nodes in mesh 1.
The same trend of reduced WER with grid re�nement is observed in Table I(a). The slopes

between values in meshes 1–2 and meshes 2–3 are normalized by dividing all values by WER
values obtained in mesh 1. Then the average slope of reduced WER values for each mesh was
computed. The resulting values in Table I(a) indicate than an average slope of approximately
−0:3 is obtained for the rate of WER reduction. Other similarly compared slopes also generally
lied within a narrow range thereby indicating that there is some direct relationship between
WER reduction and solution error reduction. The signi�cance of establishing this relationship
is that numerical error is often di�cult to assess whereas WER computations can be readily
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added to conventional CFD codes as a complementary (or possibly corrective) part of the
overall formulation.
In addition, the signs of WER (i.e. positive=negative) and average WER values (accounting

for these signs) are retained and summarized in Table I(b). It can be observed that both
deviations from the expected zero WER value (i.e. negative and positive deviations), as well
as the average WER, are reduced when the grid spacing is re�ned. This result is consistent
with earlier observations. Although both positive and negative deviations indicate anomalies
in the case of potential �ow, it is anticipated that the sign may be signi�cant with respect to
various characteristics of the solution error, i.e. di�usive error, dispersive error, second-order
e�ects, etc. Furthermore, the sign would have a specially signi�cant meaning for viscous �ows
since it would more clearly distinguish non-physical results (indicated by negative sign) from
certain types of errors, such as di�usive type errors.

6. CONCLUSIONS

A Galerkin weighted residual method is presented in a �nite-element analysis of computational
�uid �ow. A discrete formulation of the second law of thermodynamics is provided as a
complementary component of the overall formulation. The entropy-based approach computes
a WER and establishes its close connection to the truncation error in the solution of the
mass and momentum equations. In this way, local anomalies involving mass and momentum
exchange, such as velocity undershoots, can be detected by trends in the WER data. The
speci�c slopes involving WER reduction, grid spacing and solution error have been determined
to fall within a narrow range. The overall trends con�rmed that truncation errors are closely
related to reduced weighted entropy residual in an example of incompressible �uid �ow in a
converging channel. It is anticipated that entropy can serve as an e�ective basis for achieving
reliable, accurate and physically reasonable results in computational �uid �ow.

NOMENCLATURE

A area of element
F entropy �ux
N interpolation (shape) function
p pressure
Ṗs entropy production rate
q conserved variable(s)
R residual
s speci�c entropy
u; v velocity components
V velocity magnitude (

√
u2 + v2)

W weight function
WER weighted entropy residual
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Greek
� velocity potential
� nodal value of �
� �uid density

Subscripts

G evaluation on boundary
i node i
0 reference value
s entropy

Superscripts

e local (elemental) value
n− 1 previous time step
n current time level
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